تأثیر سطوح مختلف نیتروژن بر عملکرد و شاخص‌های رشد گیاه گوجه‌فرنگی

غزاله سیحانی، احمد گلچین و فرید شکاری

(تاریخ دریافت: 12/1390، تاریخ پذیرش: 17/1392)

چکیده

به منظور بررسی تأثیر سطوح مختلف نیتروژن و شوری آب آبیاری بر عملکرد و شاخص‌های رشد گیاه گوجه‌فرنگی، 40 نمونه گوجه‌فرنگی به صورت فاکتوریل با سه تکرار و در قالب طرح یک‌عیار کامل تصادفی آجرا گردید. تبیمارهای آزمایشی شامل چهار سطح شوری، 2/5، 4/5 و 6/5 دسی‌زمین برمتر از منبع کلرید سدیم و 200 و 400 کیلوگرم در هکتار بودند. نتایج نشان داد که شوری باعث کاهش عملکرد میوه و افزایش گیاه، وزن خشک اندازه‌گیری و سطح برگ گردد. پیشگیری و کنترل مقدار بیشتر نیتروژن و وزن گیاهی از سروی شوری 2/5 دسی‌زمین برمتر مناسب بوده و افزایش میزان نیتروژن در هکتار اختلاف معنی‌داری دارد. کم‌مقدار نیتروژن میوه و شاخص‌های رشد گیاهی از شباهت (صرف کیلوگرم نیتروژن در هکتار) بدهد. این نتایج به نشان دهنده مقدار عملکرد و افزایش گیاهی از سطح 240 کیلوگرم در هکتار نیتروژن و 6/5 دسی‌زمین برمتر شوری (تیمار شاهد) خشک اندازه‌گیری هوا و سطح برگ گوجه‌فرنگی از سطح 240 کیلوگرم در هکتار نیتروژن و 6/5 دسی‌زمین برمتر شوری (تیمار شاهد) حاصل می‌شود. کم‌مقدار نیتروژن و وزن گیاهی از شباهت (صرف کیلوگرم نیتروژن در هکتار نیتروژن و 6/5 دسی‌زمین برمتر شوری) تیمار شاهد بوده و مقدار آن از سطح 240 کیلوگرم نیتروژن در هکتار و 6/5 دسی‌زمین برمتر شوری تراکمی از نظر عملکرد و کنترل نیتروژن و وزن گیاهی بیشتر بوده و منصف می‌باشد. مقدار نیتروژن میوه سبب کاهش و تعلیق اثر نامطلوب شری یا عملکرد و شاخص‌های رشد گیاه گوجه‌فرنگی شود و با افزایش سطح شوری آب آبیاری مقدار نیتروژن مورد نیاز برای دستیابی به حداکثر عملکرد کاملاً می‌باشد.

واژه‌های کلیدی: سبزی گلخانه‌ای، شوری آب، کود شیمیایی

مقدمه

در بیماری از مناطق دنیا، به‌ویژه در مناطق خشک شوری یکی از مشکلات اصلی است که آب‌های نامطلوب یا فعالیت‌های کشاورزی دارد. شوری با افزایش فشار اسیدی، عدم تعداد عنصر غذایی و سمیت برخی عنصر ویژه، رشد گیاه را محدود می‌کند.

1. گروه خاک‌شناسی، دانشگاه زنجان
2. گروه زراعت، دانشگاه زنجان
3. مسئول مکاتبات، پست الکترونیکی: gazalehsob@yahoo.com
گوجه‌فرنگی (Lycopersicon esculentum Mill) به خصوص در شرایط شور، دارد (20). تغذیه گیاه با نیتروژن هم از لحاظ عاملکرده و هم از جنبه کیفیت محصول مهم است (29). مصرف نیتروژن در تمام خاک‌های ضروری است؛ ولی اهمیت آن در خاک‌های شور بیشتر است (21 و 32). مصرف نیتروژن به‌عنوان روستی مقد در کاهش سرطان نامانی‌سازی شوری فردی قرار گرفته است (33). کاربردهای نیتروژن تأثیر منفی بر گیاهان رشد کرده در شرایط شور دارد که احتمالاً در جدب نیتروژن سطح پایین شوری محیط شردن رشد، به‌دلیل جذب نیتروژن و عمدیان جلب نیتروژن نمک ممکن است باعث شردن محیط شردن رشد شود و اثر مصرف شوری را بر گیاه افزایش دهد (9).

کوئین و همکاران (16) در تحقیقات خود نشان دادند که شوری حاصل از کاربرد به‌معنای بیشتر از شوری حاصل از سولفات، محیط نیتروژن گیاه را کاهش می‌دهد. این موضوع احتمالاً به دلیل رقابت شدید آلیون کلر با نیتروژن برای اتصال جایگاه‌های جذب در غشاء پلاسمایی است که می‌تواند جذب نیتروژن ممکن است باعث شردن محیط شردن رشد شود.

برهمنشنگی بین شوری و عناصر غذایی بر عملکرد گیاه پیچیده بوده و عوامل مختلفی نظیر چربی وchema، ترکیب و سطح نیتروژن و غلظت سایر عناصر بانتگی دارد (34). با توجه به اینکه کودهای شبیه‌ای موثر کودهای نیتروژن‌ناپذیر، اصلاح محلول بوده و باعث افزایش شوری خاک‌اند، بنابراین لازم است مقدار نیتروژن مورد نیاز در شرایط شور تغییر گردد. چون مصرف این کودها ممکن است باعث شرایط غیرشور نشود، بلکه ممکن است باعث کاهش عملکرد نیز شود. در برخی از موارد، زنگشک و تر میوه گیاهان در شرایط شور افزایش نیتروژن در مقایسه بیشتر از آنچه در شرایط غیر شور لازم است، کاهش و در برخی میوه گیاهان در شرایط شور افزایش نیتروژن در مقایسه بیشتر از آنچه در شرایط غیر شور لازم است، کاهش و در برخی میوه گیاهان در شرایط شور افزایش نیتروژن در مقایسه بیشتر از آنچه در شرایط غیر شور لازم است، کاهش و در برخی میوه گیاهان در شرایط شور افزایش نیتروژن در مقایسه بیشتر از آنچه در شرایط غیر شور لازم است، کاهش و در برخی میوه گیاهان در شرایط شور افزایش نیتروژن در مقایسه بیشتر از آنچه در شرایط غیر شور لازم است، کاهش و در برخی

در بیان این موضوع، اشاره کردند که گوجه‌فرنگی در تمام افزایش‌های کشور در سطحی بسیار بیشتر می‌شود. در میان سبزه‌های گلخانه‌ای، گوجه‌فرنگی به‌معنی مصرف تازه‌خوری، مهتابانی که از گلخانه‌ای سبزه‌های اروپایی است. با توجه به اهمیت بالای این محصول و نیاز زیاد کشور به تولید، این کشور می‌تواند شرکت‌های تحقیقاتی بیشتری در خصوص بالا بردن عملکرد و کیفیت میوه انجام اطلاع دهد (5).

شوری از طریق کاهش وزن میوه منفی بر عملکرد دارد. در بیان این موضوع، نشان دادند که شوری باعث کاهش محصول و وزن شکر و مصرف گوجه‌فرنگی در مقایسه با تیمار بدون شدیده است (21). محکمی کاردهی کردن که رشد انداز هوای گوجه‌فرنگی، به‌ویژه بگرو، بیشتر از رشد رشته شوری حساس است (23). شوری می‌تواند به‌طور مستقیم توسیع دیواره سلولی را کاهش دهد (15). در بروز از تحقیقات انجام شده، نشان داده شده است که رشد رشته و انداز هوای در شرایط آبکش تحت تأثیر شرایط گرفته در حالی که رشد آنها در خاک کاهش پایه افتاد (27). در آزمایشی پیش‌گیری و کنترل مقدار عملکرد گوجه‌فرنگی به‌ترتیب از سطح شوری و 13 و 12 دسی‌زمین بر متر در محفظ ایکشت در دست آماده تعداد میوه با کاربرد 12 دسی‌زمین بر متر شوری به‌صورت معمولی در کاهش داشتند (13). سانت و همکاران (32) اظهار داشتند که با افزایش شوری محلول غذایی و وزن تعداد مصرف گوجه‌فرنگی کاهش پایین. هاجم و همکاران (24) نیز که کاهش وزن و افزایش شاخص‌ها و رشد گوجه‌فرنگی را در شرایط شوری گزارش نمودند.

نیتروژن یکی از عناصر غذایی بر مصرف گیاه بوده که مدیریت مصرف آن اهمیت ویژه‌ای در تولید محصول،
تأثیر سطوح مختلف بتروزون بر عملکرد و شاخص‌های رشد گیاه

مودل افزایش معنی‌داری نشان داده است (۳۲). در آزمایشی‌های نشان داده شد که افزایش بتروزون محلول غذایی عملکرد میوه گوجه‌فرنگی را افزایش داده، در حالی که افزایش شوری بر عملکرد بی‌ترکیب بود. همچنین، کفیت میوه در سطوح پایین‌تر شوری و بالایی بتروزون به مطلوب بود (۲۵). زاهدی و همکاران (۴۳) نشان دادند که کاربرد بتروزون در سطوح پایین‌تر شوری اثر منفی شوری را بر رشد و عملکرد گوجه‌فرنگی کاهش داد. ویلاکاتونزه و همکاران (۳۵) انواع نمودند که کاربرد بتروزون زیادی در سطوح بالایی شوری از منفی شوری در عملکرد گوجه‌فرنگی دارای اثرات مثبت است.

فراهم کردن امکانات لازم برای جلوگیری از کسترش خاک‌های شور و با اصلاح و زه در کیفیت اراضی، به‌دنبال هزینه‌بی‌پار والی کارایی مالکان و گاه غیرمکانی ارتقا می‌آید. برای مقاومت به شوری به‌عنوان مدل روزنامه‌ای مناسب، به‌پایداری از اراضی شور اماکن‌بند می‌سازد (۴۴). با توجه به شوری منابع آب و خاک در اثر حضور ناتوان، تیزینی سطوح مناسب بتروزون باید استفاده از قادر عملکرد گوجه‌فرنگی در شرایط شور اهمیت دارد. برخوردار است. به همین دلیل، هدف این تحقیق بررسی تأثیر سطوح مختلف بتروزون بر عملکرد و شاخص‌های رشد گیاهی گوجه‌فرنگی تحت شرایط شوری همچنین، تیزینی پایه‌گذاری که گوجه‌فرنگی را، بی‌پار والی داشته و بی‌ترکیب عملکرد آن در سطوح مختلف شوری آب آبیاری از جمله اهداف دیگر این تحقیق بودند.

مواد و روش‌ها

همان‌گونه اجرای این پژوهش، آزمایشی در گلخانه دانشکده کشاورزی دانشگاه زنجان در بهار سال ۱۳۸۹ به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی، با چهار سطح شوری (۰، ۷، ۱۴ و ۲۱ ضخیم با متر)، ژن‌ها، و شاخه بتروزون (۰، ۴۰ و ۲۵۰ ppm) در هکتار در سه تکرار اجرایی انجام شد. خاک مورد ارائه‌ای در آزمایش مربوط به مزرعه دانشگاه زنجان و از لایه سطحی (عمق صفر تا ۲۰ سانتی‌متر) بود.
جدول 1. نتایج ویژگی‌های نبات‌های و سبک‌ها در آزمایش

<table>
<thead>
<tr>
<th>ویژگی</th>
<th>مقادیر واحد</th>
<th>مقادیر واحد</th>
<th>بقای خاک</th>
<th>قد</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوم نیتروژن کل</td>
<td>0.15</td>
<td>فرصت</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>میلی‌گرم بر کیلوگرم</td>
<td>0.5</td>
<td>میلی‌گرم بر کیلوگرم</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>پناسیم</td>
<td>0.6</td>
<td>میلی‌گرم بر کیلوگرم</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>لیپوز</td>
<td>0.84</td>
<td>میلی‌گرم بر کیلوگرم</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>روز</td>
<td>1.5</td>
<td>میلی‌گرم بر کیلوگرم</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

تایید و بحث

اثر سطوح مختلف موره و نیتروژن بر عملکرد (وزن ترش میوه)

نتایج بهبود آماده از تجربیات و آزمایش‌ها نشان داد که افزایش

بازیابی خاکهای مناسب بر عملکرد گوجه‌فرنگی در سطح احتمال 1/6 آزمون دانکن معنی‌دار بود

اثر سطوح موره بر عملکرد میوه موره باعث کاهش معنی‌دار عملکرد گوجه‌فرنگی شد. به‌طوری‌که

بیشترین عملکرد (190/5 گرم در بوته) در نیم‌بزرگی موره (5/6 اکثره بر متر شوری) به‌دست آمد

و این فاصله گذاری همکاران (36) گزارش کرده که با افزودن نمک

کاریکیسی مدلی به محلول غذایی، وزن موره گوجه‌فرنگی نسبت به

نیم‌بزرگی 29% کاهش یافت. علیرضا و همکاران (31) نیز نتایج

مشابهی را در گیاه گوجه‌فرنگی گزارش کرده که وزن نیتروژن

در شوری در مورد غذایی مانند درخت (32) و یا زیتون (30) نیز گزارش شده است. از جمله یالیسی که افزایش

شوری باعث کاهش عملکرد گوجه‌فرنگی می‌شود، تأثیر منفی

قبلی اعمال شدید. برای جلوگیری از تجمع نمک در منطقه ریشه، در

هر مراحل از ابزاری یک برخه اشیائی در نظر گرفته شد که در این

حالت مقدار آب ابزاری برابر بود با آب مورد نیاز سراسری

(FC به‌طور 1/2 آن وزن آزمایش‌های انجام شده. برای اندازه‌گیری ارتفاع کیسه

طول بوط از طوله تا نیمی آن، اندازه‌گیری شد. برای اندازه‌گیری

گیاه وزن و آن، اندازه‌گیری وزن آن، بوط در دمای 55 درجه سیلسیوس

توسط آنها ریشه و وزن آنها بوط در دمای 55 درجه سیلسیوس تا رصد بود و وزن

اثر خشک ریشه به‌آزمایش گذاشته. به‌منظور اندازه‌گیری میزان

خطری و نیتروژن ریشه، به دنبال اندام‌های هوا، ریشه و نیتروژن

خود و نیتروژن. این مطالعه البته خواهید

برای مثال از این آزمایش‌ها، Excel MISTAT-C

برای رسم نمودارها استفاده شد.
تأثیر سطح مختلف نیترژن بر عملکرد و شاخص‌های رشد گیاه

شکل نشان می‌دهد که برای به‌دست آوردن بیشترین

درجه و تجربه واربند اثرات ساده و تداخلی شوری و نیترژن بر عملکرد میوه، ارتقاء گیاه، وزن خشک اندازه‌های هوا. وزن خشک ریشه و سطح گیاه و عملکرد

میانگین مربوطات

<table>
<thead>
<tr>
<th>میانگین سطح برگ</th>
<th>وزن خشک برگ</th>
<th>وزن خشک ریشه</th>
<th>افتادگی هواپیم</th>
<th>درجه آزادی</th>
<th>عملکرد</th>
<th>مقدار تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>(گرم در بوته)</td>
<td>(گرم در بوته)</td>
<td>(گرم در بوته)</td>
<td>(سانتی‌متر)</td>
<td></td>
<td>(گرم در بوته)</td>
<td>(%)</td>
</tr>
<tr>
<td>شوری شدید</td>
<td>270/292/296</td>
<td>0/4/7</td>
<td>10/8/9</td>
<td>12/13</td>
<td>24/26/28</td>
<td>3/2/1</td>
</tr>
<tr>
<td>شوری متوسط</td>
<td>482/373/384</td>
<td>8/9/4</td>
<td>14/8/9</td>
<td>16/17</td>
<td>54/28/5</td>
<td>5/3/1</td>
</tr>
<tr>
<td>شوری نمونه</td>
<td>588/744/481</td>
<td>0/1/0</td>
<td>11/6/7</td>
<td>16/19</td>
<td>99/9</td>
<td>9/6/1</td>
</tr>
<tr>
<td>متوسط</td>
<td>127/132/136</td>
<td>11/12/13</td>
<td>11/12/13</td>
<td>16/19</td>
<td>16/11</td>
<td>5/3/1</td>
</tr>
</tbody>
</table>

** و: * بیترتیب معنی‌دار در سطح احتمال 1% و 5%**

دارد (8)، طی بررسی که روی اثر سطح مختلف نیترژن بر عملکرد گوجه‌فرنگی در شرایط غیرشور صورت گرفت، مشخص گردید که مصرف 150 کیلوگرم نیترژن در هکتار برای استبای به حداکثر عملکرد کافی می‌باشد و در سطح بالاتر از 150 کیلوگرم نیترژن در هکتار عملکرد کاهش می‌یابد (18 و 35).

فرهنگ و همکاران (1) با بررسی تأثیر سطح مختلف نیترژن بر گوجه‌فرنگی گزارش نموده که تبادل‌های نیترژن بر عملکرد تأثیر معنی‌داری داشت و بیشترین مقدار عملکرد از تیمار 120 کیلوگرم در هکتار نیترژن به دست آمد و در سطح بالای عملکرد کاهش یافت. که با نتایج به دست آمده در این تحقیق مهندسی کامل دارد.

اثر سطح نیترژن بر عملکرد میوه

با افزایش سطح نیترژن افزایش عملکرد گوجه‌فرنگی به‌طور معنی‌داری افزایش یافته. به‌طوری که به‌ترتیب عملکرد 15/3 کیلوگرم در بوته، در تیمار 120 کیلوگرم نیترژن در هکتار افزایش گرفت. که با سطح 340 کیلوگرم نیترژن در هکتار اختلاف معنی‌داری نداشت. نتایج عملکرد 1/2 کیلوگرم در بوته (شکل 1) نشان داد که اثرات عامل سطح نیترژن (محدود به 15 کیلوگرم در هکتار) به‌طور معنی‌داری ایجاد می‌کند. افزایش میزان نیترژن مصرفی از صفر به 120 کیلوگرم در نور و در فصول مختلف به‌طور معنی‌داری افزایش می‌یابد.

53
بر می‌ترد، حداکثر عملکرد در اثر مصرف همین مقدار نیتروژن اندکی کمتر بود و عملکرد در ایران به ۱۸۷/۱ به ۲۰۰۳ گرم در بوته افزایش یافت. ولی در سطح شوری ۶/۵ دسی‌زیمنس، هکتاَر عملکرد گوجه‌فرنگی از ۱۸۳/۷/۷ به ۱۸۶/۰/۶ گرم در بوته افزایش یافت. در اثر سطح شوری ۴/۵ دسی‌زیمنس، حداکثر مقدار نیتروژن لازم برای دستیابی به حداکثر عملکرد کاهش یافت. به طوری که در این سطح شوری، افزایش مصرف نیتروژن از صفر به ۶۰ کیلوگرم در هکتاَر، عملکرد گوجه‌فرنگی را از ۱۳۸/۷ به ۱۴۳/۷ گرم در بوته به حداکثر مقدار بعیسی به ۱۴۳/۷ گرم در بوته افزایش داد. افزایش شده در سطح شوری ۶/۵ دسی‌زیمنس بر متر، مصرف نیتروژن عملکرد را اندکی افزایش داد که در بسیاری از موارد این افزایش معنی‌دار نبود.

اثر سطح مختلف شوری و نیتروژن بر شاخص‌های رشد

نتایج بدست آمده از تجزیه واریانس داده‌ها نشان داد که تأثیر تیمارهای شوری و نیتروژن و اثر متقابل آنها بر ارتفاع گیاه گوجه‌فرنگی در سطح احتمال ۱٪ معنی‌دار بود (جدول ۱).

اثر سطح شوری بر ارتفاع گیاه

اثر سطح نیتروژن بر ارتفاع گیاه

اثر سطح نیتروژن بر ارتفاع گیاه، افزودن نیتروژن به محیط رشد گیاه سبب افزایش ارتفاع گیاه شد (شکل ۴). بیشترین مقدار ارتفاع گیاهی گوجه‌فرنگی ۴۰/۲ (شکل ۴) بیشترین مقدار ارتفاع گیاه شوری سبب کاهش ارتفاع گیاه شد. بیشترین مقدار ارتفاع گیاه گوجه‌فرنگی (۵۰۱/۷ سانتی‌متر) از تیمار شوری و نیتروژن (۴/۵ دسی‌زیمنس) از تیمار ۶/۵ دسی‌زیمنس بر متر شوری به دست آمده (شکل ۳). شوری یا
تأثیر سطح مختلف نیتروژن بر عملکرد و شاخص‌های رشد گیاه…

نداشت و در یک کلاس آماری قرار گرفت. کمترین مقدار ارتفاع گیاه (۴۵ سانتی‌متر) در تیمار شاهد اندازه‌گیری شد.

![نمودار گیاه (کلوئیوگرم در هکتار)](شکل ۲) اثر سطح نیتروژن بر ارتفاع گیاه گوجه‌فرنگی

سانتی‌متر) از تیمار ۲۰۰ کیلوگرم در هکتار نیتروژن به‌دست آمد که با تیمار ۱۲۰ کیلوگرم در هکتار نیتروژن اختلاف معنی‌داری نداشت.

![نمودار سطح نیتروژن (کلوئیوگرم در هکتار)](شکل ۳) اثر سطح نیتروژن بر ارتفاع گیاه گوجه‌فرنگی

(شکل ۴) در واقع، شوری ضمن کاهش نفوذ‌پذیری غیای پلاسماسی سرول‌های رنگ‌بندی افراشی به‌دست آمده بود. این نتایج نشان می‌دهد که افزایش سطح نیتروژن در گیاه‌ها باعث افزایش گیاهی آن‌ها و افزایش مقاومت به عامل شریک شد.

اثر مقایسه سطح نیتروژن بر ارتفاع گیاه

در کلیه سطوح نیتروژن، با افزایش مقدار نیتروژن مصرفی، ارتفاع گیاه گوجه‌فرنگی افزایش یافت. مقدار افزایش معنی‌داری از مصرف ۱۵۰ کیلوگرم در هکتار نیتروژن به‌دست آمد که با سطح ۱۲۰ کیلوگرم در هکتار نیتروژن تفاوت معنی‌داری نداشت. اثر مصرف نیتروژن بر افزایش ارتفاع گیاه در شوری بالاتر بیشتر بود (جدول ۳). این امر نشان می‌دهد که مصرف ترکیبی نیتروژن با کاهش اثر سود شوری بر رشد و نمو گیاهان کافی می‌باشد. همچنین، مقایسه میانگین‌های برهمکنش شوری و نیتروژن نشان داد که مشترکین

55
کاهش ارتفاع گیاه، سطح برش، وزن ترش ملتوم و عملکرد در گیاه گوجه‌فرنگی شد. فراندنز-گارسیا و همکاران (19) با بررسی اثر شوری بر رشد گوجه‌فرنگی در محیط جدول ۳ اثر مقیاس سطح شوری و نیتروروز بر عملکرد میوه، ارتفاع گیاه، وزن خشک اندازه‌های هواپیمای وزن خشک ریشه و میانگین سطح برش گیاه گوجه‌فرنگی به‌دست آمد (شکل ۳). ال-بههدی و همکاران (۷۷) نمایان افزایش وزن

<table>
<thead>
<tr>
<th>میانگین سطح برش گیاهی (منیتر)</th>
<th>وزن خشک ریشه (کرم در بونه)</th>
<th>وزن خشک اندازه‌های هواپیمای (کرم در بونه)</th>
<th>ارتفاع گیاه (سانتی‌متر)</th>
<th>عملکرد میوه (کرم در بونه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۱۰/۸ abcd</td>
<td>۱/۷a</td>
<td>۷/۶b</td>
<td>۴/۷c</td>
<td>۱۸۳/۶d</td>
</tr>
<tr>
<td>۳۱۸/۵ abc</td>
<td>۲/۷b</td>
<td>۹/۷b</td>
<td>۵/۷b</td>
<td>۱۵۳/۶b</td>
</tr>
<tr>
<td>۳۷۷/۱ abcd</td>
<td>۲/۷b</td>
<td>۹/۷b</td>
<td>۵/۷b</td>
<td>۲۳۰/۷d</td>
</tr>
<tr>
<td>۴۵۷/۱ aef</td>
<td>۹/۷b</td>
<td>۱۱/۷c</td>
<td>۵/۷b</td>
<td>۱۵۰/۷b</td>
</tr>
<tr>
<td>۲۹۰/۶ efg</td>
<td>۷/۶b</td>
<td>۴/۸a</td>
<td>۱۷۸/۱c</td>
<td>۲۲۰/۷b</td>
</tr>
<tr>
<td>۳۷۱ abde</td>
<td>۷/۶b</td>
<td>۸/۸b</td>
<td>۱۸۸/۳d</td>
<td>۲۵۰/۷b</td>
</tr>
<tr>
<td>۳۳۵ bcd ed</td>
<td>۳/۱d</td>
<td>۹/۱b</td>
<td>۴۹/۷e</td>
<td>۲۰۰/۷b</td>
</tr>
<tr>
<td>۴۱۲/۷ abcd</td>
<td>۱/۱d</td>
<td>۴۹/۷e</td>
<td>۲۰۰/۷b</td>
<td>۲۵۰/۷b</td>
</tr>
<tr>
<td>۲۳۷ efg def</td>
<td>۷/۶b</td>
<td>۴/۱e</td>
<td>۱۲۳/۸e</td>
<td>۲۵۰/۷b</td>
</tr>
<tr>
<td>۲۴۴ abcd efg</td>
<td>۷/۶b</td>
<td>۴/۸e</td>
<td>۴۹/۷e</td>
<td>۱۲۳/۸e</td>
</tr>
<tr>
<td>۲۳۷ abcd efg</td>
<td>۷/۶b</td>
<td>۴/۸e</td>
<td>۴۹/۷e</td>
<td>۱۲۳/۸e</td>
</tr>
<tr>
<td>۲۴۸ abcd def</td>
<td>۷/۶b</td>
<td>۴/۸e</td>
<td>۴۹/۷e</td>
<td>۱۲۳/۸e</td>
</tr>
<tr>
<td>۲۳۷ abcd efg</td>
<td>۷/۶b</td>
<td>۴/۸e</td>
<td>۴۹/۷e</td>
<td>۱۲۳/۸e</td>
</tr>
<tr>
<td>۲۴۸ abcd def</td>
<td>۷/۶b</td>
<td>۴/۸e</td>
<td>۴۹/۷e</td>
<td>۱۲۳/۸e</td>
</tr>
<tr>
<td>۲۳۷ abcd efg</td>
<td>۷/۶b</td>
<td>۴/۸e</td>
<td>۴۹/۷e</td>
<td>۱۲۳/۸e</td>
</tr>
<tr>
<td>۲۴۸ abcd def</td>
<td>۷/۶b</td>
<td>۴/۸e</td>
<td>۴۹/۷e</td>
<td>۱۲۳/۸e</td>
</tr>
<tr>
<td>۲۳۷ abcd efg</td>
<td>۷/۶b</td>
<td>۴/۸e</td>
<td>۴۹/۷e</td>
<td>۱۲۳/۸e</td>
</tr>
</tbody>
</table>

میانگین‌های که دارای حداکثر یک حرف مشترک باشند درای تفاوت معنی‌داری در سطح احتمال ٪۵ بای آن‌ها دانسته می‌شود.

کل‌گرم نیتروروز در هکتار و کمترین وزن خشک اندازه‌های هواپیمای گیاهی (۸/۴ کرم در بونه) از نیمار شاهد نیتروروز به‌دست آمد (شکل ۴). ال-بههدی و همکاران (۷۷) نمایان افزایش و گرایش وزن خشک ساقه گوجه‌فرنگی را با افزایش سطح نیتروروز گزارش کردند. تأثیر نیتروروز بر رشد ریشه و محصول گوجه‌فرنگی از تأثیر عناصر دریگ بیشتر است. افزایش هدای خشک تولیدی با

این نتایج به‌دست آمده از تجزیه وارایس داده‌ها نشان داد که تأثیر سطح مختلف نیتروروز بر وزن خشک اندازه‌های هواپیمای گیاه گوجه‌فرنگی در سطح احتمال ٪۵ معنی‌دار بود (جدول ۲). افزودن نیتروروز به محیط کشت گیاه سبب افزایش وزن خشک اندازه‌های هواپیمای گیاهی شد. به‌طوری که بیشترین وزن خشک اندازه‌های هواپیمای گیاه (۷/۸ کرم در بونه) از سطح ۲۰۴

خشک گیاه کاهش یافت.

اثر سطح نیتروروز بر وزن خشک اندازه‌های هواپیمای گیاه

خشک گیاه کاهش یافت.

اثر سطح نیتروروز بر وزن خشک اندازه‌های هواپیمای گیاه

خشک گیاه کاهش یافت.

اثر سطح نیتروروز بر وزن خشک اندازه‌های هواپیمای گیاه

خشک گیاه کاهش یافت.
تأثیر سطح مختلف نیتروژن بر عملکرد و شاخص‌های رشد گیاه

شکل ۴. اثر سطح نیتروژن بر وزن خشک اندازه‌گیری شده گوجه‌فرنگی

BM

C

A

D

A

B

C

D

یافته‌های میکرو у

شکل ۵. اثر سطح شوری بر وزن خشک اندازه‌گیری شده گوجه‌فرنگی

MIT

C

A

D

A

B

C

D

یافته‌های میکرو у

اثر متقابل سطح نیتروژن و شوری بر وزن خشک اندازه‌گیری شده گوجه‌فرنگی

با افزایش شوری، میانگین وزن خشک رشد گیاه نسبت به تیمار شاهد افزایش می‌یابد. در علاوه به افزایش وزن خشک رشد گیاه (3/4 تا 3/5 در برابر استاندارد کاهش گیاه هوایی) در سطح ۶/۵ دسی‌زیمینس بر منت شوری (جدول ۲)، افزایش نسبت به سطح نیتروژن دیده می‌شود. اندازه‌گیری نسبت به سطح ۶/۵ دسی‌زیمینس بر منت (جدول ۳) نیز در آزمایش‌های مشابه مشاهده شده است. در این آزمایش، وزن خشک رشد گیاه نسبت به طرح نرمال اندازه‌گیری شد. در علاوه به افزایش وزن خشک رشد گیاه (3/4 تا 3/5 در برابر استاندارد کاهش گیاه هوایی) در سطح ۶/۵ دسی‌زیمینس بر منت شوری (جدول ۲)، افزایش نسبت به سطح نیتروژن دیده می‌شود. اندازه‌گیری نسبت به سطح ۶/۵ دسی‌زیمینس بر منت (جدول ۳) نیز در آزمایش‌های مشابه مشاهده شده است.

اثر سطح شوری بر وزن خشک رشد گیاه

نتایج به‌دست آمده از تجربه واریانس ساده‌ای نشان داد که تأثیر نیتروژن بر وزن خشک رشد گیاه گوجه‌فرنگی در سطح احتمال 1% معنادار نبود (جدول ۴).

اثر متقابل سطح نیتروژن و شوری بر وزن خشک اندازه‌گیری شده گوجه‌فرنگی

نتایج به‌دست آمده از تجربه واریانس ساده‌ای نشان داد که تأثیر نیتروژن بر وزن خشک اندازه‌گیری شده گوجه‌فرنگی در سطح احتمال 1% معنادار نبود (جدول ۴).
گوجه-فرنگی در سطح احتمال 1/2 معنی‌دار بود (جدول 2).

تاکنون تیمارهای برنج و لیموی تیتر ریشه گیاه گوجه-فرنگی
در سطح احتمال 1/2 معنی‌دار بود (جدول 2).

با افزودن نیترات به محیط رشد گیاه، وزن خشک ریشه افزایش
می‌یابد. بطوریکه بیشترین وزن خشک ریشه گیاه
(0.732/182) در 15 دسمتری زیستن بر متر
شوری و کمترین وزن خشک
(0.719/7) در 5/6 دسمتری زیستن بر متر
شوری و نیترات در هکتار
بوده است. در این تحقیق، شاهد
نیترات مصرفی یک شاخه باشد
گسترش و فراوانی تولیدی می‌کنند. ولی رشد نهایی کم و
محدود می‌باشد
(79 هم و دماسان (26 بیشترین وزن خشک
ریشه گیاه
گوجه-فرنگی را با کاربرد 155 میلی‌گرم نیترات در لیتر
و ملون
(29) بیشترین وزن خشک ریشه گیاه گوجه-فرنگی را
با کاربرد 255 میلی‌گرم نیترات در لیتر گزارش کرده‌اند. تأثیر
بوده است امکان خاصیت بدن نهادی که در مقایسه با
امنای‌پذیری فوق الذکر حاکم و وزن ریشه از سطح
کمتر نیترات
حالت شده است که دلیل آن را می‌تواند نیترات محیط
و انجام آزمایش در محیط خاک در مقایسه با محیط
تأمین نیک‌شیزی از نیترات مورد نیاز توسط ماده
آئیر مشابه
اثر مقاپل سطحی و نیترات بر وزن خشک ریشه گیاه
نتایج به‌دست آمده از تجربه و ارائه‌دادهها نشان داد که اثر
مقاپل تیمارهای شوری و نیترات بر وزن خشک ریشه گیاه

*شکل 7 اثر سطوح شوری بر وزن خشک ریشه گیاه گوجه-فرنگی

*شکل 8 اثر سطوح نیترات بر وزن خشک ریشه گیاه گوجه-فرنگی

*شکل 9 نشان دهنده نتایج انجام گرفت

*شکل 10 نشان دهنده نتایج انجام گرفت

*شکل 11 نشان دهنده نتایج انجام گرفت

*شکل 12 نشان دهنده نتایج انجام گرفت

*شکل 13 نشان دهنده نتایج انجام گرفت

*شکل 14 نشان دهنده نتایج انجام گرفت

*شکل 15 نشان دهنده نتایج انجام گرفت

*شکل 16 نشان دهنده نتایج انجام گرفت

*شکل 17 نشان دهنده نتایج انجام گرفت

*شکل 18 نشان دهنده نتایج انجام گرفت

*شکل 19 نشان دهنده نتایج انجام گرفت

*شکل 20 نشان دهنده نتایج انجام گرفت

*شکل 21 نشان دهنده نتایج انجام گرفت

*شکل 22 نشان دهنده نتایج انجام گرفت

*شکل 23 نشان دهنده نتایج انجام گرفت

*شکل 24 نشان دهنده نتایج انجام گرفت

*شکل 25 نشان دهنده نتایج انجام گرفت

*شکل 26 نشان دهنده نتایج انجام گرفت

*شکل 27 نشان دهنده نتایج انجام گرفت

*شکل 28 نشان دهنده نتایج انجام گرفت

*شکل 29 نشان دهنده نتایج انجام گرفت

*شکل 30 نشان دهنده نتایج انجام گرفت

*شکل 31 نشان دهنده نتایج انجام گرفت

*شکل 32 نشان دهنده نتایج انجام گرفت

*شکل 33 نشان دهنده نتایج انجام گرفت

*شکل 34 نشان دهنده نتایج انجام گرفت

*شکل 35 نشان دهنده نتایج انجام گرفت

*شکل 36 نشان دهنده نتایج انجام گرفت

*شکل 37 نشان دهنده نتایج انجام گرفت

*شکل 38 نشان دهنده نتایج انجام گرفت

*شکل 39 نشان دهنده نتایج انجام گرفت

*شکل 40 نشان دهنده نتایج انجام گرفت

*شکل 41 نشان دهنده نتایج انجام گرفت

*شکل 42 نشان دهنده نتایج انجام گرفت

*شکل 43 نشان دهنده نتایج انجام گرفت

*شکل 44 نشان دهنده نتایج انجام گرفت

*شکل 45 نشان دهنده نتایج انجام گرفت

*شکل 46 نشان دهنده نتایج انجام گرفت

*شکل 47 نشان دهنده نتایج انجام گرفت

*شکل 48 نشان دهنده نتایج انجام گرفت

*شکل 49 نشان دهنده نتایج انجام گرفت

*شکل 50 نشان دهنده نتایج انجام گرفت
تأثیر سطح مختلف نیترولژن بر عملکرد و شاخص‌های رشد گیاه

شکل ۱۰. اثر سطح نیترولژن بر میانگین سطح برگ گیاه گوجه‌فرنگی

گوجه‌فرنگی از عناصر دیگر یافته (۲۰۰). در حضور نیترولژن کافی، هر رشد نرخ رشد و تولیدی گیاه کارآمدتر است.

شکل ۹. اثر سطح شوری بر میانگین سطح برگ گیاه گوجه‌فرنگی

قابلیت دسترسی گیاه کاهش می‌یابد که این موضوع از یک طرف موجب محدود می‌شود و از طرف دیگر باعث کاهش تورم سلول‌های برگ (تعریف‌سازی) سطح کاهش گیاه می‌کاهد. به‌عده‌ای، شوری می‌تواند سبب بهبود صدهم باشد.

اثر سطح نیترولژن بر میانگین سطح برگ گیاه

نتایج به‌دست‌آمده از تحقیقات اولیه دیگر نشان داد که اثر متوالی تیمارهای شوری و نیترولژن بر میانگین سطح برگ گیاه گوجه‌فرنگی در سطح اهمال (۱) می‌باشد (جدول ۲). در کل سطح شوری، افزایش سطح نیترولژن از صفر به ۲۴۰ کیلوگرم در هکتار باعث افزایش میانگین سطح برگ گیاه گوجه‌فرنگی شد. اما در سطح پایین شوری (۲۵ دسی‌میلی‌متری) نسبت به سطح بالای شوری (۶۵ دسی‌میلی‌متری) نیترولژن تأثیر بیشتری در افزایش سطح برگ گیاه داشت. به‌طوری که بیشترین میانگین سطح برگ گیاه (۱۶/۵٪) در افزایش ۵۰ دسی‌میلی‌متری در هکار و کمترین میانگین سطح برگ گیاه (۱۶/۲٪) در افزایش ۵ دسی‌میلی‌متری شوری و صفر کیلوگرم نیترولژن در هکار تأثیر گیاه کارآمدتر است (جدول ۳). استفاده از این عناصر در جمله سطح برگ دارد. بسیاری از محققین نشان داده‌اند که کاربرد نیترولژن تأثیر مثبتی بر سطح برگ داشت و تأثیر نیترولژن بر رشد سیب‌زパイ و محصول
آبی‌نیتر باشید که جانشین آبی‌نیتر کلر می‌شود و باعث افزایش
غلظت آبی‌نیتر‌های آن در گیاه می‌گردد. گیاهانی که در معرض
مطروح بالای کارور سدیم قرار دارند، بدون کمک نیترات تانی
از زیادی کلر دچار کندی رشد می‌شوند.

نتیجه‌گیری
در تحقیق حراسی، انفراشی شوری آب آبی‌نیتر باعث کاهش
ارتقای گیاه و خشک شدن اندام‌های هوابی، سطح برگ و عملکرد
موه گیاه کره‌فرنگی نسبت به تیمی شاهد شد. بین میانگین
زن خشک رشته‌نسبت به تیمی شاهد انفراش معلولیات
یافت. در پژوهش حراسی، آستانه تحلب کره‌فرنگی به شوری
۲/۵ دسی‌زمین بر متر بود و از این سطح به بعد کاهش

متابع مورد استفاده
۱. احیایی، م. و. ع. ا. بهبهانی‌زاده. ۱۳۸۲. شرح روش‌های تجهیز شیمیایی خاک. نشریه فنی شماره ۸۹۳، موسسه تحقیقات خاک و آب.
نیشابور.
۲. خلدری، ب. و. ط. اسماعیلی زاده. ۱۳۸۲. تغذیه معدنی گیاهان عالی. انتشارات دانشگاه شیراز.
۳. جعفری، م. ۱۳۸۳. سیاست‌های جهاد سازندگی، معاونت آموزش و تحقیقات، موسسه تحقیقات جغله و مران شکور.
۴. حویلی، ز. ک. و. م. ج. ملکوتی. ۱۳۷۹. و. ا. آموزش و تربیت کشاورزی، وزارت کشاورزی، مهندسی فنی ۳۳: ۱۰۱-۱۰۸.
۵. لاله‌نیا، م. و. ع. ع. کاوشی. ۱۳۷۹. اثر مصرف بی‌پرداخت گیاه غیر فنگی مکمل‌های غذایی در تغذیه معدنی ارگانیزم گیاه‌های گل‌خانه‌ای در
کشت گیاه‌پروریک، مجله علم کشاورزی. ۳۱(۹): ۲۳۱-۲۴۰.
۶. زاهدی، ف. م. و. ع. روحی. م. و. ع. ا. و. م. ع. صرف‌زده‌های حیاتی. ۱۳۸۹. اثر انفراش‌های شوری و تیمینر بر رشد، عملکرد و
جدب ناصر غذایی گیاه فنگی تحت شرایط‌ای که در علوم و فنون کشت‌های گل‌خانه‌ای (۲): ۳۳۱-۳۴۰.
۷. سالاری‌پور، ع. و. م. مجنین. ۱۳۸۸. حاصلخیزی خاک. انتشارات دانشگاه تهران.
۸. ملکوتی، م. ج. و. ع. کاوشو. ۱۳۸۴. تغییری بر حاصلخیزی خاک‌های ایران. انتشارات دانشگاه تهران.
۹. ملکوتی، م. ج. و. م. همبئی. ۱۳۸۳. حاصلخیزی خاک‌های مناطق خشک و نیمه خشک (مشکلات و راه حلها). انتشارات دانشگاه
تربیت مدرس، تهران.
۱۰. فرینه، ع. و. ج. فرنازی. ۱۳۸۵. بررسی تأثیر میزان آب آبی‌نیتر و کوک از علبکرد و بازده مصرف آب در
گیاه فنگی، مجله علم کشاورزی. ۳۲(۱۰): ۲۷۳-۲۷۸.
۱۱. قهرم، ر. و. م. کامی. ۱۳۷۸. گیاه فنگی صنعتی از کاشت‌ها برداشت. انتشارات جهاد دانشگاهی، مشهد.